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The study of the mechanics of systems in motion on the surface
of a sphere and a pseudosphere, dating back to the investigations
by Lobachevskii and Bolyai, has attracted the attention of many
researchers. In particular, spherical and pseudospherical analogues

of a number of classical problems of the mechanics of a point, such
as the Bertrand–Kepler problem and the problem of two gravi-
tating centres, have been studied (see, for example, the review
by Dombrowski and Zitterbarth1 with a subsequent addendum
by Shchepetilov,2 and also the earlier collection edited by Borisov
and Mamayev3). In the course of more recent investigations,4–8 the
main classical results were corroborated. In these studies, explicit
integration of the equations of motion was also carried out, and ana-
logues of Kepler’s laws were formulated and substantiated. Besides
the studies collected in the well-known review edited by Borisov
and Mamayev,3 among recent investigations we will single out Ref.
8 in which “action–angle” variables were introduced for potentials
ensuring the solution of Bertrand’s problem, which made it possible
to move on to an investigation of quantum analogues of the prob-
lems under consideration. We also mention investigations devoted
to the non-integrability of the restricted two-body problem9 and
to quantization in the two-body problem.10,11

Investigations of rigid body dynamics in non-Euclidean spaces,
dating back, it appears, to the work of Killing and Zhukovskii,12,13

with the prime aim of deriving equations of motion and the correct
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a rigid body possessing a plane of symmetry over the surface of a three-
ction of a spherical analogue of Newtonian gravitation forces is considered.
rical analogues of the concepts of centre of mass and centre of gravity are
ue of “satellite approach” in the problem of the motion of a rigid body in

the assumption that the dimensions of the body are small compared with
centre, is studied. Within the framework of satellite approach, assuming
uestion of the existence and stability of steady motions is investigated. A
ion of the plane oscillations of a body in an elliptic orbit is derived.
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introduction of the concept of the centre of mass, were continued
in Refs. 14–19 (see also Refs. 20–22). The qualitative behaviour of
an axisymmetric top was investigated in Ref. 23. The existence, sta-
bility and bifurcation of the steady motions of a dumb-bell-shaped
body in a central gravitation field have also been studied.24,25

1. Formulation of the problem
Suppose that in a four-dimensional Euclidean space R4 with
a fixed absolute system of coordinates OX1X2X3X4 a three-
dimensional sphere of unit radius, with centre at the origin of
coordinates, the point O, is embedded in the standard way and is
given by the equation

(1.1)

Besides the sphere (1.1), we will consider its plane section, a
two-dimensional sphere, given by the relation

(1.2)

Let � be the rigid body inserted into the sphere (1.1). As this
sphere allows of a group of isometries, the body � can rotate freely
within it. Let C be a point fixed in the body, and Cx1x2x3x4 be a
right-handed orthogonal system of coordinates connected to the
body such that the Cx3 axis is directed from the centre of the sphere
along its radius. Then the Cx1, Cx2 and Cx3 axes are positioned in a
tangential plane to the sphere (1.1) at the point C. For convenience,
it is also possible to consider the system of coordinates Ox1x2x3x4
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Fig. 1.

connected to the body, the axes of which are parallel to the corre-
sponding axes of the system Cx1x2x3x4, while the origin coincides
with the centre of the sphere.

Let us assume that the distribution of the masses of the body
allows of a plane of symmetry x4 = 0. This occurs, for example, in the
case where all points of the body are concentrated in the indicated
plane. Let us assume that, at the initial instant of time, the planes
X4 = 0 and x4 = 0 coincide, and the projections of the vectors of the
velocities of all points forming the body onto the normal to this
plane are zero. Then, these two planes coincide for the entire time
of motion, and the section of the body with the plane x4 = 0, denoted
by �2, remains on the sphere (1.2) for the entire time of motion.
Such motions are the main subject of the present paper.

The spherical plate �2 can be considered as a rigid body rotating
about the point O in the plane absolute space R3 formed by the axes
OX1X2X3. The massive points Ai (i = 1, 2, . . .) forming the plate are
specified by their projections ri = (ri1, ri2, ri3) onto the axes of the
system of coordinates OX1X2X3 connected to the body, remaining
constrained by the unique relation

which indicates that the points are situated on a sphere of unit
radius.

The following spherical coordinates, introduced with respect to
the axes Ox1x2x3, will prove useful

(1.3)
The angles �i specify the polar radii of the points and are equal to
the angular distance between the Cx3 axis and the vector OAi. The
angles �/2 − �i are normally referred to as the latitudes. The polar
angles �i (longitudes) are specified by the angles between the COX1
and COAi planes (Fig. 1).

2. Geometrical statics

2.1. The concept of force

To formulate the principal positions of spherical geometrical
statics, and to compare them with the analogous propositions of
statics in the case of a plane space, it is useful to introduce the
spherical analogue of the concept of force and investigate its prop-
erties. For convenience, we will dwell on the two-dimensional case
– in the general case the situation will have a similar nature. In
this case, we will actively use the above-mentioned analogue of
the problem of the motion of a body over a sphere and the problem
of the motion of a rigid body about a stationary point.

Let point A from the sphere (1.2) be subjected to a certain (force)
action, making it change position. From the viewpoint of the indi-
cs and Mechanics 72 (2008) 15–21

Fig. 2.

cated analogue, a moment M that applied to the rigid body OA
forces it to rotate about the stationary point O. If the moment M
is perpendicular to the segment OA, it can be represented in the
form

(2.1)

where the vector F is naturally considered to be the force applied
to the point A. Considering relation (2.1) to be the equation relative
to the vector F and bearing in mind the uniqueness of the radius of
the sphere (1.2) and the perpendicularity of the vectors M and OA,
we will write the solution of this equation as

(2.2)

The force F defined in this way is perpendicular both to the vector
M and to the vector OA, and is situated in a plane tangential to the
sphere (1.2) at the point A.

As is well-known, force is considered to be a sliding vector in
the mechanics of flat space. On a two-dimensional sphere, the sit-
uation is analogous: using the concept of parallel transfer along
a curve, we will transfer the force along its line of action, which is
defined by it as a great-circle tangential vector. With such a method
of force transfer, the moment vector M from relation (2.1) remains
unchanged (Fig. 2):

Here and below, the argument in the expressions for the forces
denotes their point of application.
2.2. The composition of forces

Suppose that forces F1 and F2 are applied at the points A1 and A2
of the body �2. As on a two-dimensional sphere, any two great cir-
cles intersect, the lines of action of these forces are sure to intersect
(or concide). The case of coincidence is simple: the composition
of these forces reduces to their transfer to any point of the circle
– their line of action – and to subsequent composition as vectors
positioned on one line. In the case of the intersection of the lines
of action of the forces, we will transfer these forces to either of
two points of intersection of their lines of action. These forces, now
specifying a common plane tangential to the sphere, then combine
according to the parallelogram law. The line of action of the result-
ing force also passes through the indicated points of intersection of
the circles (Fig. 3).

If ˛ is the angle between these forces, referred to the common
point A, and f1 and f2 are their magnitudes, then the magnitude of
the resulting force is given by the expression

(2.3)
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Here, the resulting force, referred to the point A, makes with F1
and F2 angles �1 and �2 such that

(2.4)

which is obtained, for example, as a result of applying the sine the-
orem to any of the triangles comprising the parallelogram of forces
in Fig. 3.

Let us now consider, from the viewpoint of geometrical statics,
the spherical analogue of the lever law. Suppose the forces F1 and
F2 are applied to the ends of a lever – points A1 and A2 respectively.
In other words, these forces generate a moment rotating the rigid
body OA1A2 about the stationary point O. If A is one of the points of
intersection of the lines of action of these forces, then, transferring
the force to this point, we have

For the lever to remain in equilibrium, a force F(A) must be
applied to it or, what amounts to the same thing, a moment M
must be applied to the body.

Relation (2.4) is naturally considered to be the spherical ana-
logue of the lever law. The point C of intersection of the line of
action of the resulting force F and the lever A1A2, provided with a
mass f defined by relation (2.4), is naturally considered to be the

centre of mass of the system of points A1 and A2 with masses f1 and
f2.

3. Analytical statics

Let us assume that at the point N on the surface of the sphere
(1.1) there is a gravitating centre. As is well known, the analogue of
Newtonian gravitational potential for a three-dimensional sphere,
determined from the solution of the Laplace–Beltrami equation, is
proportional to the cotangent of the angle between two interacting
points. If in the axes connected to the body the single vector ON is
given as � = (�1, �2, �3), then the interaction potential is written as

(3.1)

where G is the product of the “gravitational constant” and the mass
of the gravitating centre.
cs and Mechanics 72 (2008) 15–21 17

Let us assume that the body is small compared with the radius
of the sphere (1.1), i.e.,

and is positioned close to the point C of intersection of its third axis
of inertia and the surface of the sphere (1.2). Then, bearing in mind
the relation

we will write the expansion of the potential with respect to the
corresponding small parameter in the form

(3.2)

where Pkl are components of the Poinsot tensor. From now on we
will assume that Pij = 0, i �= j, which can be achieved by appropriate
choice of the system of coordinates connected to the body. Note
also that

If the point C is selected in such a way that

(3.3)

then the expansion of the potential begins with terms of the sec-
ond order of smallness. In other words, the point C, selected in
the body: in this case, if the body is fastened at the point C,
then, as a first approximation, a neutral position of equilibrium
occurs.

Using relation (3.3), we will try to find the spherical analogue
of Archimedes’ lever law. We will assume that the lever is formed
by the points A1 and A2, with masses �1 and �2, connected by a
segment of the great arc of a two-dimensional sphere. We will use
relations (1.3), in which we will assume that � = 0. Then, by virtue
of the first relation of (3.3),

(3.4)

and the second relation is satisfied identically. Relation (3.4)
expresses the spherical analogue of the lever law and can be con-
sidered to be the definition of the spherical analogue of the centre
of gravity.

Remark 1. The centre of gravity concept introduced in this
way is in agreement with the centre of mass concept introduced
elsewhere21 on the basis of formal mathematical axioms (cf. Ref.
26):
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1. The centre of mass of a single-point system is the point itself.
2. The centre of mass of the centres of mass of two systems of point

masses coincides with the centre of mass of the combination of
points of these systems.

3. The multiplication of all masses of a system of point masses by
the same number does not alter the position of the centre of
mass but does entail the multiplication of the overall mass by
the same number.

4. The centre of mass is invariant under the displacements of the
system of point masses as a rigid whole.

5. The position of the centre of mass is continuous in the natural
topology of the system of point masses.

This cannot be said of the centre of mass concept based on the
geometrical statics considerations introduced above.

To investigate the existence and stability of equilibria of a lever
in the case where condition (3.4) is satisfied, we will employ, as
usual, the Euler angles

In these angles, the potential U2, apart from an additive constant
that is independent of the angle �, has the form

In this case there are four equilibria, which are determined from
the equation

These are the horizontal equilibria � = 0 and � = �, and the verti-
cal equilibria � = �/2 and � = 3�/2. Sufficient conditions for their
stability are defined by the inequality
It can be seen that the two vertical and the two horizontal equi-
libria possess the same stability property. Moreover, if the vertical
equilibria are stable, then the horizontal equilibria are unstable, and
vice versa.

It is remarkable that, unlike the plane case, the stability condi-
tion depends principally on the position of the suspension point.
If the suspension point is in the “northern hemisphere” (N is the
“North Pole”), then the vertical equilibria are stable and the hor-
izontal equilibria are unstable. If the suspension point is in the
southerm hemisphere, then, conversely, the horizontal equilibria
are stable and the vertical equilibria are unstable.

If the suspension point is on the equator, then, as a second
approximation, again there is a continuous family of neutral equi-
libria, and, in order to investigate the existence of equilibria and
their stability, it is necessary to take into account terms of the
third-order smallness in the expansion of the potential.

Remark 2. In the region adjacent to the equator, where the quan-
tities r1i, r2i and �3 have the same order of smallness, instead of
expansion (3.2), generally speaking, it is better to use expansion in
the small parameter that arises and which has the form
cs and Mechanics 72 (2008) 15–21

In the natural case of a non-zero mass of the body, its motion is
determined by terms of the first order of smallness.

In the precise formulation, by virtue of symmetry, there are two
vertical equilibria in the problem. However, unlike the flat case, in
the problem being considered there are families of inclined equilib-
ria “born” from the vertical equilibria when the parameters of the
problem pass through critical values. In this case, as usual, there is
a change in the stability properties of the vertical equilibria.

Remark 3. In flat space, the centre of mass concept can be intro-
duced not only from static but also from dynamic considerations.
In fact, the centre of mass is the only body-connected point mov-
ing uniformly and rectilinearly with any free motion of the body.
On the other hand, the centre of mass is the only point of the rigid
body belonging to any axis of its free permanent rotation. In plane
space, both these concepts and the “statically defined” centre of
mass concepts are identical.

However, the transfer of centre of mass concepts based on
dynamic representations to the case of a sphere is difficult. In fact,
a point of a body moving uniformly during free motion of the body
along a great circle simply does not exist. At the same time, there
are a minimum of six points belonging to the body that can be con-
sidered as centres of rotation of the body at an arbitrary angular
velocity.

4. Dynamics

Consider the dynamics of a spherical plate as a rigid body mov-
ing about a stationary point coinciding with the centre of the sphere
– the point O. The kinetic energy has the form
where � = (	1, 	2, 	3) is the angular velocity vector, I is the inertia
tensor of the body about the stationary point, and its components
in the principal axes are

(4.2)

The kinetic energy can be expressed in the same way as a func-
tion of the Euler angles and their time derivatives. In Euler angles,
the coordinates of the angular velocity vector have the form

The angle 
 is measured by the angular distance between the
OX1 axis and the line of intersection of the OX1X2 and Ox1x2 planes.
Here, the kinetic energy acquires the form
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The motion of the plate can be described using the Euler–Poisson
equations

(4.3)
or by means of the normal Lagrange equations

(4.4)
Eqs. (4.3) and (4.4), apart from the energy integral

(4.5)

allow of the area integral

(4.6)
while Eq. (4.3) also allow of the geometric integral

(4.7)

To integrate the equations of motion, in the general case one
additional integral is lacking.

5. The satellite approximation

Let us consider the motion of a body on the assumption that its
dimensions are small compared with the radius of the sphere (1.2).
Again we will assume that the body is positioned close to the point
C of intersection of its third axis of inertia and the surface of the
sphere (1.2), and this point is the centre of gravity of the body.

We will represent Eq. (4.3) in the form
(5.1)

Because, in the approximation under consideration, the follow-
ing inequalities are satisfied

(5.2)

system (5.1) can be represented in the form (cf., for example, Ref.
27)

(5.3)
cs and Mechanics 72 (2008) 15–21 19

Eq. (5.3) must be supplemented by Poisson’s equations.
Equations of this type were used earlier to describe restricted

problems in rigid body mechanics.27,28 These equations turn out to
be partially integrable, i.e., the motion in certain degrees of freedom
can be described in explicit form. However, unlike the problems
considered in the publications mentioned, this circumstance is not
so obvious in the problem under examination. Therefore, to inte-
grate the equations of motion, we will use the Euler angles.

We will focus primarily on the fact that the expression for the
kinetic energy has the form

Bearing in mind relations (5.2), the Lagrange equations of the
second kind can be represented in the form

(5.4)

(5.5)

(5.6)

Eqs. (5.4) and (5.5) are separated from Eq. (5.6). They describe
the motion of the centre of gravity of the body – the point C. The
corresponding quadratures are well known (see, for example, Ref.
From the first integral, occurring by virtue of Eq. (5.4),

Substituting this expression into Eq. (5.5) we can represent the
latter in the form

(5.7)

The first integral of this equation

(5.8)

enables us to define the region in which the nutation angle � varies
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To integrate Eq. (5.7), with p
 �= 0, as in the classical Kepler prob-
lem, we change to a new time, for which the spherical analogue
of the true anomaly – the angle 
 – is used. In implicit form, the
solution can be represented as (cf. Ref. 7)

(5.9)

Here, the following relations hold

(5.10)

We will introduce into Eq. (5.6) the true anomaly as a new inde-
pendent variable. We have

Substitution of expressions (5.9) and (5.10) into this equation
and subsequent simplification yields

(5.11)

We have a spherical analogue of the equation of plane vibrations
of a satellite in an elliptic orbit.29

In the case of the motion of the centre of mass in a circular
orbit, the eccentricity e vanishes, and the equation being considered

acquires the form

(5.12)

This equation is completely integrable. The energy integral has
the form

Remark 4. Using reasoning similar to the foregoing, it is possible
to write the spherical analogue of the equations of spatial motions
of a satellite about its centre of mass.

Remark 5. Eq. (5.11) are Lagrangian. The corresponding
Lagrangian function has the form

where the quantities �, �̇ and 
̇ are replaced by functions of the
true anomaly 
, according to relations (5.10) and (5.11). By a canon-
ical transformation we can write the equations of motion using
Hamilton’s equations.
cs and Mechanics 72 (2008) 15–21

6. The relative equilibria of a satellite in a circular orbit

We will investigate the features of the motion of a satellite about
a centre of mass in a circular orbit. We will assume that K > 0, i.e.,
that the satellite is elongated along its first axis of inertia. According
to Eq. (5.12), in the satellite there are two pairs of relative equilib-
ria: 1) “tangential”, in which � = 0 and � = �; 2) “radial”, in which
� = + �/2.

If the following condition is satisfied

(6.1)

i.e., in the case of low and moderate values of the constant of the
area integral, the radial relative equilibria are stable and the tan-
gential relative equilibria are unstable.

When the inequality opposite to (6.1) is satisfied, the horizontal
equilibria are stable, whereas the vertical equilibria are unstable.
The latter effect is not observed for satellites moving in a flat space.
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